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Introduction 
 

Ce document est la retranscription des notes de Jean Andreau concernant la complétion du 

Théorème de Froude, connu dans le monde éolien sous le nom de limite de Betz. Cette limite 

indique que l’énergie maximum récupérable est 16/27 (59.3%) de l’énergie arrivant à l’infini 

sur le disque hélice. Ce sont des considérations expérimentales qui ont amené Jean Andreau à 

élaborer la théorie présentée ici. Cette théorie s’est avérée plus pertinente vis-à-vis de ses 

essais, et suggère notamment que le plafond théorique de Betz peut être dépassé et l’a même 

déjà été. 

 

Jean Andreau est un ingénieur Français né en 1890 et mort en 1953. Ses dons pour la 

mécanique et l’aérodynamique l’ont amené à travailler pour l’industrie automobile où il a 

déposé de nombreux brevets. Il est notamment le concepteur de la Mathis VEL 333, véhicule 

économique léger se caractérisant par une très faible masse à vide et une aérodynamique 

particulièrement soignée. 

Il est également l’inventeur de l’éolienne à dépression, une éolienne à axe horizontal dont 

l’originalité réside dans la transmission de l’énergie au sol par voie pneumatique. 

 

Pour le design des hélices de ses éoliennes, Jean Andreau s’est inspiré de la théorie 

tourbillonnaire de Joukovski, enrichie des travaux de Prandtl, exposée par M.A Toussaint 

dans Théorie et calcul aérodynamique des hélice d’aviation et des hélices ventilateurs, édité à 

Paris en 1938. Toussaint était professeur à la Sorbonne et Directeur de l’Institut 

aérotechnique de Saint-Cyr. Son ouvrage sur les hélices est encore couramment utilisé 

aujourd’hui. 

 

Afin de pouvoir appliquer cette théorie aux éoliennes où les hélices sont réceptrices et non 

motrices, Jean Andreau a refait un passage analytique en modifiant si besoin les signes des 

vitesses induites. Les équations finales obtenues sont bien sûr extrêmement proches de celles 

que l’on trouve dans le livre de Toussaint. 

 

Cette approche s’est révélée particulièrement efficace puisque dès les premiers essais des 

hélices dessinées selon ce principe, Jean Andreau s’est aperçu, notamment à travers la 

mesure des poussées, que la théorie de Froude était impropre à expliquer les résultats. On lit 

ainsi dans une lettre datant du 16 Janvier 1951, et adressée au Directeur des Etudes et 

Recherches d’EDF au sujet d’essais d’hélices éoliennes : 

 

« […] Il résulte des dossiers 2 et 4, qu’on ne peut expliquer les résultats obtenus, que si l’on 

admet que l’énergie empruntée au vent est plus grande que celle que représente la limitation 

du théorème de Froude simple. C’est la raison pour laquelle nous nous sommes efforcés de le 

compléter. » 

 

On lit encore dans son compte rendu d’expérience d’une hélice creuse de 7 mètres de 

diamètre à l’institut de Saint-Cyr : 
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« […] Si l’on fait le calcul direct avec  =7.83
1
 et le coefficient frictionnaire turbulent pour 

l’hélice
2
 on trouve bien h =0.545

3
. Le terme frictionnaire, de son côté, représente une part de 

rendement de 0.236
4
. De sorte que sans parler de la perte induite, l’énergie retirée du vent, 

pour ces deux seuls facteurs est : 0.545 + 0.236 = 0.781. Donc elle est bien supérieure de celle 

de la limite de Froude (0.593) qu’elle dépasse de 31.5%. ». 

 

Ces lettres ponctuent une suite de notes, écrites par Jean Andreau entre 1948 et 1951, visant 

à compléter le fameux théorème de Froude, et à resituer les rendements et xC  atteignables en 

donnant un meilleur point de marche dans le vent. Jean Andreau a par la suite utilisé la 

théorie tourbillonnaire autour de ce nouveau point de marche, mais il est décédé peu après, 

en 1953, ne pouvant démontrer pleinement la pertinence de son approche. 

 

 La note I rappelle le théorème de Froude, en évoque ses limites par rapport à 

l’expérience, notamment à travers les résistances hélice mesurées sur le terrain, et 

introduit une modification au théorème proposée par Pistolesi. 

 

 La note II propose différentes interprétations physiques de la résistance 

supplémentaire de l’hélice par rapport au théorème de Froude, et introduit 

notamment la notion de frottement de l’air sur le sillage de l’hélice. 

 

 Enfin la note III expose une approche qui synthétise les trois premières (Froude, 

Pistolesi et calcul frictionnaire du sillage) et se révèle plus pertinente au regard des 

essais. Cette approche propose ainsi un point de marche alternatif à celui de Froude 

(ou Betz) en terme de résistance du disque hélice et de vitesses induites. 

 

 Enfin la dernière note indique comment calculer une hélice « optimum optimorum » 

selon les considérations et résultats qui précèdent. 

 

Voici la retranscription de ces notes, à la virgule près. Toute intervention ne relevant pas des 

écrits de Jean Andreau sera signalée par un renvoi en bas de page. 

Nicolas Andreau 

                                                 
1
 Dans les notes de Jean Andreau,   désigne la vitesse spécifique en bout de pale, VR /. , reprenant la 

notation de Toussaint pour les hélices réceptrices. On la note plus communément  dans la littérature, alors 

que chez Toussaint   est l’inverse de  . 

 
2
 Jean Andreau prenait ainsi en compte la mauvaise fabrication constatée des pales (gondolements, flèche nulle 

à 0.7 et négatives au-delà au lieu de positives, profils laminaires non respectés aux bords d’attaque, têtes de 

rivets insuffisamment planées). Il estime par le calcul, avec coefficient frictionnaire laminaire, arriver à un 

rendement de 0.68 pour une marche   de 8.3 au lieu de 7.83. 

 
3
 Lorsqu’il parle de rendement, sauf précision particulière, il se place toujours par rapport à l’infini, c'est-à-dire 

par rapport à la puissance (fictive) d’un tube de courant de diamètre égal à celui de l’hélice et de vitesse égale à  

celle du vent. Le rendement utile h  est donc bien défini exactement comme aujourd’hui : c’est le rapport entre 

la puissance disponible sur l’arbre hélice et la puissance à l’infini : h =(couple.  ) /  (
3...2/1 VS ). 

 
4
 La part de rendement en question provient de l’énergie dépensée par l’hélice pour vaincre le frottement. Elle 

n’est donc pas disponible sur l’arbre hélice, mais tout de même retirée de l’énergie mécanique du vent et 

transformée en chaleur. 
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1. NOTE N° I : LE THEOREME DE FROUDE ET SON 
APPLICATION AUX AEROMOTEURS 

 

Le théorème de Froude met d’accord la variation de l’énergie définie d’un côté par le 

théorème des quantités de mouvement, de l’autre par la variation de l’énergie cinétique, de 

part et d’autre d’une surface S placée face au vent. 

 

Il en résulte que si la vitesse du vent au loin V  est diminuée de la 

vitesse induite v  juste en amont de l’obstacle, elle est diminuée 

de v2  une fois l’obstacle franchi
5
. De là on déduit la variation du 

coefficient de résistance xC , et l’énergie mise en jeux en fonction 

de v . 

 

 

L’expression de la poussée, dans ces conditions, est : 

 

  vvVSF 2...    ou bien 
2..

2
..1.4 VS

V

v

V

v
F










  

 

Avec :           

 
V

v

V

v
Cx .1.4 








  (1) 

 

La puissance est : 

  3

2

..
2

..1.4. VS
V

v

V

v
vVFE










  

 

Ou bien le rendement est :       

 

















V

v

V

v
.1.4

2

  (2) 

 

On voit que le xC  maximum est obtenu lorsque 5.0








V

v
 et est égal à 1xC . De même la 

puissance maximum est atteinte pour 
3

1










V

v
 et le rendement maximum est 

593.0
27

16
max  . 

 

D’après ceci, le xC  d’une hélice serait au maximum de 1 et on ne pourrait extraire du vent 

plus de 0.593 de son énergie mesurée au loin, le xC  étant à ce moment 89.0
9

8
xC . 

                                                 
5
 On trouve ce résultat par application de la conservation de la quantité de mouvement, et du théorème de 

l’énergie cinétique, appliqués entre les tubes de courant amont et aval supposés cylindriques (calcul exposé 

notamment p.27 dans l’ouvrage Les Eoliennes : Théorie, Conception et Calculs pratiques, de D. Le Gouriérès.) 
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Le Cx des hélices réceptrices. 

 

Dès qu’on a su construire des hélices réceptrices un peu rapides avec des profils de pales 

convenables, on s’est rendu compte que le xC  pouvait être beaucoup plus élevé que 1. 

C’est ainsi qu’on a presque tout de suite trouvé des xC  de 1.3 au laboratoire. 

Ensuite les hélices sur les autogyres et hélicoptères ont donné en grandeur des xC  qui sont 

restés assez longtemps autour de xC =2, pour monter de façon courante à xC =2.5. 

Les Anglais ont même obtenu, à la tour d’essais des ailes tournantes, en grandeur, un 

xC =3.4 ! 

Il devenait dès lors certain que le Théorème de Froude devait être complété. On a invoqué 

aussi des modes d’écoulement divers autour du disque de l’hélice pour expliquer les 

coefficients trouvés. C’est ainsi qu’on a décrit 3 modes principaux d’écoulement : 
 

1. Ecoulement conforme à la théorie tourbillonnaire 

2. Ecoulement turbulent (tourbillons alternés, ou un tourbillon spiral arrière). 

3. Anneau tourbillon stationnaire à l’extrémité des pales. (Glauert). 

 

Le premier, seul, de ces écoulements s’appliquerait aux aéromoteurs rapides. 

 

Suggestion de Pistolesi. 

 

Pistolesi s’est avisé de ces difficultés et il suggère, sans plus d’ailleurs, dans son 

aérodynamique, d’écrire la formule de Froude : 

  vkvVSF 2...    , k  étant un coefficient 1  

 

Ceci donne : 

 

























V

v

V

v
kCx ..1.4  (3) 

       

Le maximum de xC  est alors 
k

Cx

1
  et est > 1. 

Cette suggestion correspond donc simplement à admettre que le débit qu’il faut considérer, 

traverse une surface S’, plus grande que la surface S de référence, et que la masse totale 

concernée par l’événement est plus grande que la masse qui traverse simplement le disque de 

l’hélice. Autrement dit, l’hélice interactionne une masse plus grande que celle qui est 

définie par le théorème de froude. Le coefficient d’interaction serait :    

 

 























V

v

V

v
k

S

S

1

.1
'

 (4) 

 

La puissance utilisable. 

 

Elle est encore : 

 FvVE .   
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Ou : 

3..
2

...1.1.4 VS
V

v

V

v
k

V

v
E











































  

Et le rendement maximum est : 

 










































V

v

V

v
k

V

v
m ..1.1.4  (5) 

       

Avec : 

     




 








kkk

kV

v
.311.

.3

1 2
 (6) 

  

Ces formules donnent lieu au tableau suivant : 

 

k   Vv /  max  xC  
S

S '  
D

D'  

1 0.333 0.593 1 1 1 

0.77 0.372 0.665 1.06 1.06 1.03 

0.666 0.3915 0.705 1.16 1.16 1.077 

0.538 0.415 0.755 1.29 1.33 1.153 

0.333 0.447 0.842 1.52 1.54 1.24 

0.2 0.472 0.905 1.713 1.72 1.31 

0 0.5 1 2 2 1.414 

Tableau 1 

 

Ce tableau est traduit sur le diagr. 1. Il montre que la limitation imposée par le th. de Froude 

n’a pas plus lieu d’exister si l’on sait faire des hélices suffisamment bien étudiées. 

 

 

Diagr. 1 
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Quelle est la surface S’ 

  

Pour 333.0k  on a 52.1xC  et 24.1
'


D

D
. 

L’essai fumigène de l’hélice de 6
m

50, hélice conforme à la théorie tourbillonnaire, permet 

grâce à la netteté des photographies du sillage, de mesurer le diamètre de celui-ci par rapport 

au diamètre de l’hélice. 

On trouve en moyenne 24.1
'


D

D
. 

Or le calcul de la poussée, effectué directement à partir des caractéristiques, par les méthodes 

déjà exposées, donne : 5.1xC  pour le point de marche de pompage des essais. Ceci est 

donc un recoupement fort intéressant. Le plafond théorique de la puissance récupérable 

serait 0.842, et nous savons que cette hélice peut être nettement améliorée. Son rendement, 

calculé d’après ses formes est 6.0h  par rapport au vent à l’infini. Elle aurait donc un 

rendement de 0.6/0.842=0.715 par rapport au théorème de Pistolesi, et un rendement de 1.01 

par rapport au théorème de Froude. 

 

Les deux colonnes du Tableau 1 : xC  et 
S

S '  montrent l’identité pratique de ces deux valeurs. 

La surface 'S  est donc celle du sillage de l’hélice. Il s’en suit que :  

 

On peut appliquer le théorème de Froude-Pistolesi au disque de l’hélice, ou bien le 

théorème de Froude seul, au sillage de l’hélice défini par le diamètre de sa nappe 

tourbillonnaire. 

 

Si l’on fait le calcul, on constate que les résultats sont identiques. Ceci n’est pas pour 

surprendre à la réflexion, car le sillage définit bien, visuellement, la section réelle dans 

laquelle la perturbation du courant s’est étendue. Malheureusement, la question devient ainsi 

subjective, puisqu’elle est sous la dépendance de la constitution de l’hélice. 

 

Il faut remarquer que l’établissement des sections des pales par la Théorie Tourbillonnaire, 

tient compte localement du théorème de Froude appliqué à la tranche correspondante de 

l’hélice ; et que cependant la somme de ces éléments le long du rayon aboutit à définir une 

interaction plus grande et se rapprochant de la réalité. 

 

Pistolesi, à qui ceci n’a point échappé, dit que cet effet est du au jeu des pressions et 

dépressions locales sur les pales qui vient s’ajouter aux forces dues aux variation de la 

quantité de mouvement. 

 

Toutes ces considérations prennent une grande importance pour les éoliennes rapides, ou pour 

les hélices en autorotation en fonctionnement parachutal. Dans ce dernier cas, les coefficient 

obtenus il y a quelques années étaient de l’ordre de xC =2, et les Anglais sont arrivés dans des 

essais grandeur à la tour des ailes tournantes à xC =3.4. 

 

Ces valeurs mettent évidemment le théorème de Froude pur et simple hors de question. Bien 

que ces hélices soient en auto-rotation, elles n’en fournissent pas moins la puissance 

nécessaire pour vaincre les résistances induites et celles de frottement. Ce sont donc bien des 

hélices réceptrices. Si on leur demande un peu plus de puissance progressivement, les 
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coefficients xC  diminuent, mais peuvent rester cependant assez élevés pour une puissance 

acceptable récupérée sur l’arbre. C’est le cas des éoliennes rapides modernes, fonctionnant 

assez près de leur vitesse d’autorotation. 

 

Quelques éoliennes existantes. 

 

En premier lieu, presque toutes ces machines emploient des remultiplicateurs à un seul pignon 

à un ou deux étages et souvent avec renvoi au sol. 

On a tendance à surévaluer le rendement de ces engrenages qui sont souvent assez rustiques, 

parce qu’on a généralement dans l’esprit celui des démultiplicateurs, qui est bien meilleur, 

toutes choses égales, et que ceux-ci, étant plus courants, sont plus soignés et mieux étudiés 

comme exécution des dentures, graissages et paliers. 

 

En se basant sur la pratique automobile, le Diagr. 2 fournit les rendements les plus 

vraisemblables. Le Tableau 2 montre les résultats obtenus pour cinq aéromoteurs de 4
m

20 à 

53 mètres de diamètre. 

 

 

Diagr. 2 

 

 

Tableau 2 

 

 

On peut constater que les rendements nécessaires à attribuer aux hélices, bien que celles-ci 

soient généralement de simples ailes tournantes plates, et interactionnées par un pylône, 

dépassent le plus généralement le plafond du théorème de Froude. 

 

Si vraiment celui-ci était une limitation réelle, ces hélices ne pourraient avoir plus de 0.7 à 

0.8, rendement par rapport à un plafond théorique. C'est-à-dire ne pourraient dépasser 42 à 

48% de l’énergie du vent. Il faudrait alors attribuer aux remultiplicateurs et aux génératrices 

des rendements nettement exagérés. 

 

Or, on peut faire des hélices bien meilleures que celles de ces appareils – et alors le divorce 

serait encore plus prononcé.  
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Conclusion 

 

Il semble donc, d’après ces considérations théoriques et les résultats expérimentaux actuels 

qu’il ne faille pas envisager une limitation dans la quantité d’énergie à extraire du vent 

d’après son énergie propre, puisque cette quantité ne dépend que de la constitution technique 

des aéromoteurs et non d’un plafond, à vrai dire assez mystérieux dans son essence. 

Comment se fait-il qu’on ait admis le plus généralement cette limitation, surtout depuis 

quelques années, sans l’analyser plus à fond ? 

Il est possible que la limitation due au Cycle de Carnot en Thermodynamique, soit tellement 

naturelle à l’heure actuelle qu’elle puisse entraîner dans les esprits d’autres limitations dans 

d’autres domaines, sans qu’on éprouve mieux le besoin de les discuter et qu’on les accepte 

comme allant de soi… 

 

Quoi qu’il en soit, la forme de présentation de l’énergie du vent en un lieu, ne devrait plus être 

amputée a priori de 40%, sous le nom d’énergie récupérable, et ceci permettrait de ramener à 

une valeur plus confortable l’énergie réellement disponible. 

Il n’est plus qu’à réaliser une bonne technique pour l’extraire, et ceci est en somme très 

encourageant, sinon reposant. 

 

 

 

         Jean Andreau (signature) 

 

           Oct. 48. 
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2. NOTE N° II : LES EOLIENNES ET LE THEOREME DE 
FROUDE. 

 

La note n°I était consacrée à une hypothèse de Pistolesi, qui, en introduisant dans le théorème 

de Froude un coefficient 1k , permettait de rendre compte de coefficients de résistance 

dépassant 1, comme il est observé, en particulier sur les hélices en autorotation. 

Le sens physique de ce coefficient, est d’admettre qu’une masse plus grande que celle qui 

traverse l’hélice se trouve concernée par l’événement. Autrement dit qu’il se produit à 

l’extérieur une certaine interaction. 

 

Sans qu’on puisse tenir cette hypothèse de Pistolesi pour une démonstration, elle n’en fournit 

pas moins cependant, une explication d’un résultat expérimental acquis. 

 

Cependant, lorsqu’on veut l’appliquer au calcul d’une hélice, il se produit une difficulté. Il 

faudrait en effet que la face avant et la face arrière de l’hélice n’aient pas la même surface, si 

l’on veut assurer la continuité des débits, et cela ne laisse pas d’être assez embarrassant. 

 

Nous allons essayer de montrer quelle peut être cette interaction. 

 

1. Hypothèse du dépassement. Quantité de mouvement. 

 

Si l’on désigne par w , le rapport 








V

v
, de la vitesse induite amont à la vitesse à l’infini, et si 

s  désigne la surface de l’hélice de rayon r , le volume d’air qui la traverse est : 

 wVsQ  1..1  

 

Et la masse : 

 wVsm  1...1   

 

La masse qui se présentait à l’infini était Vsm .. . La masse qui est obligé de faire le tour 

du disque de l’hélice est donc    wVswVsmmm ...11...12   , masse dont le débit 

est wVsQ ..2  . 

 

On peut représenter la chose de la façon suivante : un cylindre de rayon 0r  dans lequel la 

vitesse est V  assure le même débit que celui de l’hélice de rayon r . 

 

Alors on aura : 

  VrwVrQ ..1... 2

0

2

1    

 

De sorte que : 

 w
r

r









1

2

0  (Figure 1). 
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Figure 1 

 

L’anneau circulaire de rayon  0rr   constitue une sorte de butée que l’air ayant la vitesse V  

est obligé de contourner. C’est le dépassement envisagé. 

Cette masse wVsm ...2   qui avait la vitesse V  prend une vitesse à 90° et abandonne au 

disque sa quantité de mouvement qui est :  

wVsVwVs 2...
2

.... 2
  , 

 

Produisant un xC2  supplémentaire wC x 22  , qui vient s’ajouter à celui de Froude.  

 

On a alors : 

   wwwwwCCC xxx 23.21.4212   

 

Et le rendement est : 

   wwwh 23.1.2   (1) 

       

 

2. Hypothèse d’une source amont. 

 

On peut considérer le phénomène précédent comme une source de débit wVsQ ..2   dont le 

potentiel serait 
e

Q

.4

2


  . 

La poussée exercée par le courant V  sur cette source est VQF .. 2  Soit 

wVsVsVwF 2...
2

.. 2
   donnant lieu au même xC2  que précédemment : wC x 22  . 

 

 

3. Corrections. 

 

Sur certaines photographies du sillage de l’hélice de 6
m

50, on peut mesurer l’angle de 

déflexion du jet par rapport au plan de l’hélice, et l’on trouve en moyenne un angle de 7° sous 

le vent. Alors on aurait 90-7=83°= . 

 

La projection est : 

  881.0cos1   . 
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Le xC2  devient : 

wwC x .762.1.881.022   

 

On a donc : 

  wwwCx  1.4.762.1  (2) 

           

 

On trouve alors que le rendement théorique de 1 est obtenu pour 392.0w  avec 

64.1xC . 

 

 

4. Calcul frictionnaire du sillage. 

 

On peut aussi ne s’occuper que de l’aval de l’hélice. La condition aval définie par le théorème 

de Froude est qu’il existe un cylindre de sillage dans lequel la vitesse est  wV 21.   ; la 

vitesse étant V à l’extérieur. Ce cylindre s’étendrait jusqu’à l’infini. 

Les photos montrent qu’il ne s’agit pas d’un cylindre mais d’un cône dont la demi-ouverture 

est de l’ordre de 5.5° environ 0.1. C'est-à-dire que le sillage empiète petit à petit sur l’air 

ambiant, et ceci, aussi loin qu’on puisse distinguer la fumée. 

 

 
 

 

Il y a donc là un échange d’énergie avec l’extérieur, qui doit se traduire par quelque chose. 
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Soit R  le rayon du cylindre du sillage
6
. Le débit imposant : 

w

w

r

R

21

1
2













 

 

On peut admettre qu’à l’intérieur il se forme une couche limite, qui est turbulente, et qui croît 

progressivement jusqu’à devenir égale à R . A ce moment l’échange de l’énergie est 

pratiquement terminé, et le corps fermé, limité par le disque de l’hélice, la naissance du 

sillage, et l’ogive terminale est soumis à une traction dans le sens du vent, que l’on peut 

traduire sur le disque de l’hélice. 

 

On sait que l’épaisseur de la couche limite a comme valeur :  

5/1Re

.37.0 x
  avec xVw ..2.69000Re  , car la différence de vitesse est wV ..2  

 

La longueur L  est atteinte au moment où : 

5/1Re

.37.0 L
R   ou 

37.0

Re. 5/1R
L  . 

 

Le coefficient de frottement sur le disque est : 

5/1Re

074.0
fC  

 

La force de frottement est : 

 
5/1

2

Re

074.0
..2.

2
lSVwF


  

 

La surface latérale est : 

37.0

Re.
.2.2

5/1R
RLRSl    

 

Alors : 

2

5/1

5/1
22 4.

Re

074.0
.

37.0

Re
.2....

2
wRVF 


  

 

Et le 2

2

2

2 .4.2.
37.0

074.0
. w

r

R
C x   : 

 

 
 

 
 w

w
w

w

w
wC x

21

1
..6.1

21

1
..8.

37.0

074.0 22

2








  

 

Alors on a : 

 
 
 

 ww
w

w
wCx 




 1.4

21

1
..6.1 2  (3) 

 

                                                 
6
 Sur le dessin il s’agit de 2R  
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Le xC  va constamment en croissant à mesure qu’on se rapproche de w =0.5. Ceci rend bien 

compte des résistances des rotors en autorotation. 

 

Le rendement théorique est : 

 
 
 

 












 ww

w

w
wwth 1.4

21

1
..6.1.1 2 . 

 

Il atteint 1 lorsque 392.0w , avec 647.1xC . Au-delà, il est d’ailleurs probable que 

l’écoulement se transforme et que ce processus soit changé. 

 

 
 

 

Il est à remarquer que les trois hypothèses : 

1. Déflexion 

2. Source 

3. Frottement aval 

Fournissent un rendement théorique de 1, avec 392.0w  et 64.1xC . Ces trois 

hypothèses faisant appel à une interaction du milieu extérieur. 

 

Remarques 

1. Le calcul frictionnaire est fait d’après les valeurs admises pour le plan, car le profil des 

vitesses n’est pas encore formé jusqu’à l’axe du cylindre arrière. 

2. Cependant il ne s’agit pas d’un tube matériel. La formation de la couche limite 

intérieure s’accompagne de la formation d’une couche extérieure conique, ainsi que le 

montrent les photographies. 

3. Il est à peu certain que les longueurs de sillage L  définies par 5/1Re.
37.0

.R
L   sont 

nettement plus grandes que la réalité à cause du faible accroissement de la couche 

limite sur un plan normal. Mais, comme il s’agit de nombres de Reynolds élevés 

l’exposant usuel de 1/7 peut très bien être beaucoup plus petit, de l’ordre de 1/10 et 

même moins, ce qui peut augmenter la vitesse de formation de  . Si   augmente plus 
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vite, la surface frictionnaire concernée décroît, mais le coefficient frictionnaire 

augmente. De sorte qu’il s’établit une compensation fournissant sensiblement les 

mêmes valeurs de xC2 . Ceci est d’ailleurs évident, puisqu’il s’agit d’un échange de 

quantité de mouvement qui en définitive revient toujours au même, malgré les 

variations de détail du processus. 

 

En somme l’air extérieur au cylindre R , est ralenti progressivement, et cette variation de 

quantité de mouvement produit un effort d’entraînement sous le vent, qui ne peut se traduire 

que par une dépression supplémentaire xC2 ,appliquée au disque de l’hélice. 

 

Ainsi se trouverait annulée cette seule exception à la dynamique, d’une limitation dans la 

transformation de l’énergie. 

 

On peut simplement dire que le théorème de Froude n’est qu’une partie du phénomène, la 

partie intérieure. Le reste se passe à l’extérieur de l’espace envisagé par Froude, et permet de 

compléter les équations. 

Sans doute sera-t-il possible d’obtenir une preuve expérimentale de cette façon de raisonner, 

lorsque des hélices réceptrices suffisamment bien étudiées, et permettant une vitesse induite 

relative de l’ordre de w =0.4, auront pu être expérimentées. 

Les conséquences peuvent être grandes au point de vue de la puissance utilisable, susceptible 

d’augmenter de 70% par rapport à celle qu’indique le théorème de Froude, et qui ne dépendra 

plus que de la perfection du tracé des hélices. 

 

 

 

         Jean Andreau (signature) 
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3. NOTE N° III : COMPLEMENTS AU THEOREME DE FROUDE 

 

La note n°I porte sur la modification de Pistolesi au théorème de Froude, pour faire apparaître 

un coefficient de résistance du disque hélice pouvant dépasser 1, ainsi que l’expérience le 

montre. Mais, Pistolesi fait intervenir un coefficient 1k  que rien ne permet de calculer a 

priori. 

La note°II a surtout comme objet de permettre le calcul de la dépression qui existe à l’arrière 

du disque de l’hélice, à cause de l’effort frictionnaire de l’atmosphère sur le sillage. Cette idée 

provient du fait que d’après les photographies, les sillages sont coniques et non cylindriques 

comme le voudrait la théorie de Froude. Il en résulte un mode de calcul pour lequel, la vitesse 

relative induite optimum serait 392.0w , et le coefficient de résistance de l’hélice 64.1hC  

pour un rendement théorique de 1. 

 

Or, deux faits nouveaux ont été observés : 

 

1. A l’essai d’une hélice de 7m. de diamètre, calculée par la méthode de la note n°II, il a 

fallu rajouter au calage prévu, un angle de l’ordre de 2.1° pour obtenir une meilleure 

marche. 

2. En soufflerie, on ne constate pas de divergence sensible des filets d’air en avant de 

l’hélice. Il existe au contraire une divergence assez importante en face d’un disque de 

même perméabilité théorique (définie par wp 1 ). 

 

Il faut donc admettre une cause qui réduise la vitesse induite amont dans une certaine 

proportion. Cette cause est, probablement, la dépression qui existe en arrière du disque, et qui 

fournit dès lors une valeur calculable du coefficient k  de Pistolesi dans wk. . 

 

 

1. Equation de Pistolesi. 

 

Nous rappelons l’expression de la poussée : 

 wkwVSF .1.4...
2

2 


 

  masse spécifique. 

S  surface du disque. 

V  vitesse à l’infini. 

V

v
w i , rapport entre la vitesse induite et la vitesse à l’infini. 

k  coefficient de Pistolesi. 

 

La poussée maximum est :  

k
VSF

1
...

2

2

max


 , qui peut être plus grande que un. 

 

L’interprétation de ce coefficient k  est, qu’un volume plus grand que celui qui est défini par 

le théorème de Froude, peut traverser le disque de l’hélice. 
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2. Calcul de la dépression causée par le frottement de l’atmosphère sur le sillage. 

 

Nous rappelons brièvement la création d’une couche limite, dès l’épanouissement du sillage, 

dont l’épaisseur finit par être égale au rayon du sillage. Elle englobe un corps fermé, soumis 

par le frottement à une traction vers l’arrière, qui se traduit par une dépression sur la face aval 

de l’hélice. Note n°II. 

 

Avec la notation de Pistolesi, le débit de l’hélice est alors : 

 wkVSQ .1..   

 

La continuité du débit impose, si R  est le rayon du disque et 2R  le rayon aval, dès la 

formation du sillage : 

 
  w

wk

wV

wkV

R

R

S

S

.21

.1

.21.

.1.
2

2

22









  

 

Le nombre de Reynolds est, à la distance x  : 

xwV.2.69000Re   

( wV2  est la vitesse relative du frottement du sillage). 

 

L’épaisseur de la couche limite, à la distance x , est : 
5/1Re..37.0  x  

 

Lorsque   est égal à 2R  on a : 

37.0/Re. 5/1

2RL   

( L  est la distance où le frottement cesse d’agir.) 

 

On a, en outre, le coefficient de frottement : 
5/1Re.074.0 fC  

 

La force de frottement est alors : 

5/122 Re.074.0...4..
2

 lf SwVF


 

 

La surface latérale : 

LRS l ...2 2  

 

En définitive : 

222 ...
2

.
.21

.1
.4.0..4 RV

w

wk
wF f 






  

 

Et le coefficient 2C  qui caractérise la dépression est : 

w

wk
wC

.21

.1
..6.1 2

2



  

 

Il ne diffère donc de celui de la note II que par  wk.1  au lieu de  w1 . 
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Au total, le coefficient de résistance de l’hélice est : 

 
w

wk
wwkwCCCh

.21

.1
..6.1.1.4 2

21



  

 

 

 

 

Ou bien : 

 
w

w
wkwCh

.21

.6.11
..1.4




  

 

Et le rendement théorique est : 

 
w

w
wkwth

.21

.6.11
..1.4

2




  

 

3. Calcul du coefficient k . 

 

La vitesse d’entrée dans le disque, qui eut été  wV 1.  devient  wkV .1.  . La variation 

d’énergie cinétique qui en résulte est causée par la dépression aval. On a donc, entre les 

coefficients, la relation : 

   
w

wk
wwwk

.21

.1
..6.11.1 222




  

 

On en tire aussitôt : 

    aw
w

w

w

w
wk 

















2

2
22

1
.21

.8.0

.21
.8.0.1  

 

D’où : 

w

a
k




1
 

 

Ceci donne lieu au tableau suivant : 

 

w  k  
hC  th  

0.1 0.9 0.385 0.348 

0.2 0.713 0.777 0.665 

0.27 0.4925 1.15 1 

0.3 0 1.56  

0.35 0 2.06  

 

A partir de 27.0w  avec 1th , on atteint le régime des hélices parachutales en 

autorotation. Le rendement th n’a plus de sens. L’égalité des travaux impose 0k . Le hC  a 

alors comme expression : 

w

w
wCh

.21

.6.11
..4




  

 

Quantité de 

mouvement 

Dépression 

arrière 
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Il croît donc sans cesse avec l’augmentation de la vitesse induite, et ceci est conforme aux 

observations. Pour un rendement théorique 1th  on obtient : 

27.0w   4925.0k   15.1hC   133.0. wk  

 

Le rayon amont est RR .933.01  , et montre une très faible divergence, ce qui est conforme 

aux observations. 

 

On a RR .38.12  , définissant l’épanouissement du sillage. La vitesse induite amont est 

V.133.0  au lieu de V.392.0 , ce qui nécessite une augmentation de calage moyen (à 0.7) de 

l’ordre de 2 degrés. Ceci est conforme à ce qui est observé avec l’hélice de 7m. 

 

Une conséquence intéressante, est que la poussée nominale est réduite par rapport aux 

précédentes évaluations dans la proportion : 

7.0
64.1

15.1
  ou d’environ 30%. 

 

En utilisant ces nouvelles valeurs de hC  et de la vitesse induite dans la théorie de l’hélice, on 

obtient une meilleure approximation pour fixer les formes et les rendements dans les 

différentes conditions d’emploi. 

 

En particulier, pour la 7m, le recoupement des résultats obtenus aux essais est excellent et 

permet de raisonner la question dans le détail. 

 

 

   

 

          (Signature) 

 

J. ANDREAU 

 

01/51 
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4. CALCUL D’UNE HELICE RECEPTRICE OPTIMUM 

 

En prenant la méthode tourbillonnaire de Prandtl, par exemple, l’hélice est dite optimum si la 

perte induite est minimum. C’est donc l’hélice de meilleur rendement, dans des conditions 

données. 

La méthode précédente
7
 permet de définir la valeur de la circulation des vitesses, en chaque 

point du rayon, si l’on se donne le rapport   entre la vitesse tangentielle au rayon R  et la 

vitesse du vent. Cette circulation, à laquelle la portance en chaque point est liée, est 

proportionnelle à un facteur constant le long de l’envergure ; ce facteur étant lui-même 

sensiblement proportionnel au coefficient unitaire hC , de la poussée du disque de l’hélice. 

 

Donc, la portance en chaque point du rayon est à très peu près proportionnelle à la poussée 

unitaire de l’hélice. 

 

On calcule le couple élémentaire et la poussée élémentaire de chaque tranche de l’hélice, 

d’après les composantes. Le calcul fournit aussi et simultanément, les angles d’incidence ou 

de calage, connaissant les caractéristiques du profil d’aile que l’on a choisi, et le produit de la 

longueur de la corde par le coefficient de portance. 

 

Mais pour que le calcul réussisse, il faut encore connaître la vitesse induite d’entrée ( wk. ) car 

elle intervient dans le couple unitaire et dans la vitesse relative et il faut aussi que cette vitesse 

fasse partie d’un système homogène donnant simultanément le hC  et ( wk. ). 

 

« Pour que le calcul réussisse », signifie que lorsqu’on fait ensuite la somme des poussées 

élémentaires, on retrouve bien la poussée totale du disque de l’hélice. Sinon c’est raté. 

 

Or, on voit ainsi tout de suite qu’avec le système basé sur le théorème de Froude, on calcule 

l’hélice sur les données : 

89.0hC et Vvi .27.0  

 

Au lieu de : 

15.1hC et Vvi .133.0  

 

La première machine ne fournira qu’une fraction de 0.593 E , tandis que l’autre fournira une 

fraction analogue de E , le résultat étant beaucoup plus grand que le premier. 

 

C’est ainsi qu’une hélice moderne calculée d’après la 1
e
 méthode fournit à l’expérience un 

rendement maximum de 0.4 par rapport à la puissance à l’infini, alors que par la 2
e
 méthode 

on obtient en fait des rendements de 0.6 et plus. 

 

On gagne donc dans le 2
e
 cas une augmentation globale relative de 50%. 

 

                                                 
7
 Il est fait référence ici au calcul précis de la répartition de portance optimale le long du rayon, que Jean 

Andreau a établi en reprenant les calculs de Toussaint et en les adaptant au cas d’une hélice réceptrice. Ces 

calculs ont été conservés sous forme manuscrite, et n’ont pas été recopiés ici. 
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Il va de soi, d’après les explications précédentes que les cordes et les angles de calage, sont 

très différents pour les deux hélices, ainsi que les champs des vitesses, une fois placées dans 

le vent. Elles sont optimum toutes les deux d’après le calcul de Prandtl, mais seule la 

deuxième est optimum optimorum, et fournit le rendement absolu le plus fort. 

 

Un homme de l’art, connaissant la méthode de Prandtl, et disposant des formules et des tables 

correspondantes, peut ainsi calculer l’hélice optimum optimorum d’après les explications qui 

précèdent. 

 

Optimum : pour des conditions de marche aérodynamique au minimum de perte (théorie de 

Prandtl) 

 

Optimorum : placé au hC  aérodynamique, tel que le rendement théorique soit égal à un. 

(Complément du théorème de Froude, note n°III). 

 

 

 

          Jean ANDREAU 
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5. ANNEXES (NICOLAS ANDREAU) 

 

Voici des tracés Matlab résumant les traînées et les rendements théoriques obtenus avec les 

différentes approches des 3 notes: 

 

 
Note I : Froude simple 

 
Note II : Froude + dépassement/source, corrigé de 

l’angle de déflexion au niveau du disque hélice 

  

 
Note II : Froude + frottement du sillage 

 
Note III : Froude + coefficient de Pistolesi + 

frottement sur le sillage 

 

Pour les 4 graphes on a la vitesse induite relative axiale (v/V) en abscisse (attention dans le 

dernier graphe, la véritable vitesse induite relative est k.v/V, représentée en bleue). Les 

abscisses/ordonnées balayées sont les mêmes et les codes couleur sont les suivant : 

 

 Rouge : coefficient de résistance hC  

 Noir : rendement théorique th  

 Vert clair : rapport RR /1  (rayon amont / rayon hélice) 

 Bleu clair : rapport RR /2  (rayon aval / rayon hélice) 
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Références de Jean Andreau 

 

En 1950, la Société d’ Encouragement pour l’Industrie Nationale adresse à Jean ANDREAU 

(1890-1953) la médaille d’or du Comité des Arts Economiques pour ses travaux sur les 

éoliennes à dépression, dont il est l’inventeur et le concepteur. En voici l’intitulé : 

 

« La réputation de M. ANDREAU dépasse depuis longtemps le cadre national et son renom 

d’Ingénieur dans la Mécanique et l’Aérodynamique est en effet considérable. 

 

Mais, aujourd’hui, c’est dans le domaine de la captation à bon marché de l’énergie du vent, 

que ses travaux ont attiré d’une façon toute particulière l’attention de notre Société, et c’est 

au titre du Comité des Arts Economiques qu’il lui est conféré une Médaille d’or, étant donné 

l’immense répercussion que peut entraîner la captation et la diffusion de cette formidable 

source d’énergie si négligée ou mal utilisée jusqu’ici. 

 

C’est une bien curieuse et puissante figure que celle de M. ANDREAU. 

 

Sorti de St. Cyr en 1913, grand blessé de la guerre 1914-18, prisonnier rapatrié en raison de 

son état physique, son génie de la mécanique et de l’aérodynamique se dessine et se 

développe tout d’abord en pleine guerre, pour des objectifs militaires, et c’est une véritable 

floraison d’inventions et de réalisations consacrées à la Défense Nationale : bombes d’ 

aviation Gros–Andreau, pirotorpilles pour avions, lance-bombes, freins de bouche 

(universellement utilisés actuellement), études sur les formes de projectiles dont les 

conclusions, adoptées plus vite, auraient permis, vers la fin de la guerre, de doubler la portée 

de notre artillerie, prototype de canon sans rayure d’usinage facile et projectiles empennés, 

etc. 

 

Entre les deux guerres ses dons si marqués vers la mécanique et l’aérodynamique l’orientent 

vers l’automobile : création d’un moteur qui avec une consommation de 155gr au cheval 

heure battait le record de l’époque, mises au point de la Citroën B14, premier prototype 

d’une traction avant 7 CV, qui a vaillamment supporté 170.000 km de route, carrosseries 

coque, théories nouvelles sur les échangeurs, refroidissement et freinage aérodynamique, 

carénage des voitures : notamment de la voiture d’Eyston qui a battu le record du monde de 

vitesse avec 580 km/h en 1938. Prototypes de voitures économiques à 3 roues : une 5 places 

montant à 150km/h et consommant 4.5 litres au 100 Km, et une 3 places consommant 3 litres, 

etc. 

 

Il fut, on le voit, un des pionniers – et nous sommes là en plein domaine économique – de 

l’abaissement des prix de transport automobile grâce à l’utilisation judicieuse des principes 

de l’aérodynamique. 

 

Enfin, pendant le dernière guerre et depuis celle-ci, c’est à la conquête définitive de l’énergie 

du vent et de ses immenses possibilités qu’il a appliqué son génie créateur, servi en outre par 

toute l’expérience d’une carrière scientifique et technique si bien remplie. Après un modèle 

réduit basé sur un principe nouveau, un prototype de 6.50m de diamètre a fonctionné pendant 

2 ans près d’Orléans, démontrant victorieusement l’intérêt de cette nouvelle formule. Un 

modèle plus perfectionné de 7m de diamètre est en cours d’essai à St. Cyr et nous ne 

dévoilerons pas un bien grand secret en disant que l’Electricité de France, convaincue du 

grand intérêt de l’aéromoteur de M. ANDREAU lui fait étudier des machines de 1000kW et 

4500kW, comportant respectivement 35m et 55m de diamètre. 
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La nouveauté de ces réalisations réside dans leur extrême simplicité et par suite dans 

l’économie à prévoir pour les investissements nécessaires : une hélice creuse, 

convenablement profilée, montée folle sur un tube rigide soutenu par 4 haubans et c’est tout, 

pas d’engrenage ni de transmission. On recueille la force au pied du tube par une turbine 

marchant sur l’aspiration d’air qui se produit dans le tube sous l’effet de la force centrifuge 

rejetant les particules d’air situées dans le creux des pales vers l’extérieur par l’extrémité 

ouverte de ces pales.  

 

M. ANDREAU a creusé également le problème de la régularisation de cette énergie et a 

préconisé également des formules nouvelles. A l’échelle d’appoint d’énergie au réseau 

général français, cette régularisation serait d’ailleurs inutile. 

 

L’importance de cette source d’énergie est immense et M. ANDREAU a calculé qu’en se 

bornant à équiper les zones les plus favorables des côtes de France, on pourrait recueillir 

annuellement, d’une façon économiquement rentable, 2700 milliards de kWh alors que la 

consommation française est actuellement 100 fois moindre. On saisit là tout l’intérêt du 

champ nouveau de possibilités que les travaux de M. ANDREAU peuvent apporter à 

l’humanité. 

 

Notre société, toujours à la pointe du progrès, se doit de le féliciter et de l’encourager à 

continuer. » 

 

Société d’ Encouragement pour l’Industrie Nationale 
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Quelques photos d’éoliennes à dépression réalisées par Jean Andreau 
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Liens internet mentionnant ses réalisations 

 

http://pagesperso-orange.fr/francois.vanaret/lapagedumois/index.html 

 

http://inter.action.free.fr/pantheon/index.html 

 

 

 

 


